

SILECS/SLICES

Super Infrastructure for Large-Scale Experimental Computer Science

Christian Perez – LIP/Inria

Slides from F. Desprez – Inria/LIG & S. Fdida – Sorbonne University

INRIA, CNRS, RENATER, IMT, Sorbonne Université, Université Grenoble Alpes, Université Lille 1, Université Lorraine, Université Rennes 1, Université Strasbourg, Université fédérale de Toulouse, ENS Lyon, INSA Lyon, ...

The Discipline of Computing: An Experimental Science

The reality of computer science

- Information
- Computers, networks, algorithms, programs, etc.

Studied objects are more and more complex

• hardware, programs, data, protocols, algorithms, networks

Example of multiple sources of complexity

Processors have very nice features: caches, hyperthreading, multi-core, ...

- Operating system impacts the performance
- The runtime environment plays a role (MPICH ≠ OPENMPI)
- Middleware have an impact
- Various parallel architectures that can be heterogeneous, hierarchical, distributed, dynamic

Convergence of Computation and Communication

Communication

Good Experiments

A good experiment should fulfill the following properties

- **Reproducibility**: *must* give the same result with the same input
- **Extensibility:** *must* target possible comparisons with other works and extensions (more/other processors, larger data sets, different architectures)
- **Applicability:** *must* define realistic parameters and *must* allow for an easy calibration
- "Revisability": when an implementation does not perform as expected, must help to identify the reasons

Association for

ACM Artifact Review and Badging

SILECS/SLICES Motivation

- Exponential improvement of
 - Electronics (energy consumption, size, cost)
 - Capacity of networks (WAN, wireless, new technologies)
- Exponential growth of applications near users
 - Smartphones, tablets, connected devices, sensors, ...
 - Large variety of applications and large community
- Large number of Cloud facilities to cope with generated data
 - Many platforms and infrastructures available around the world
 - Several offers for laaS, PaaS, and SaaS platforms
 - Public, private, community, and hybrid clouds
 - Going toward distributed Clouds (FOG, Edge, extreme Edge)

SILECS and SLICES

Need of specific platforms to experiment

- To measure how programs behave and not only of the results they produce
- To (dynamically) change the execution environment (up to generate real faults)
- Tier 0,1,2 only enable to execute « safe » programs

French level: Silecs

- Based upon two existing infrastructures: Grid'5000 (HPC/cloud) and FIT (wireless/IoT)
- On the feuille de route nationale des Infrastructures de recherche since 2018
 - https://www.enseignementsup-recherche.gouv.fr/pid25366/acces-thematique.html?theme=317&subtheme=318

Eurpean level: Slices

• In case of success, the first European the first Research Infrastructure in computer science

SLICES – ESFRI Call (Sept. 2020)

25 Participants from 15 countries

- Belgium
- Cyprus
- Finland
- France (leader)
- Germany
- Greece
- Hungary
- Italy
- Luxembourg
- The Netherlands
- Norway
- Poland
- Spain
- Sweden
- Switzerland

In cooperation with GIANT and national NRENs Strong integration into the EOSC ecosystem

Timeline

Currently under evaluation

Hearing @ Spring 2021

Design: 2017-2022*

Preparation: 2022-2025

Implementation: 2024-2028

Operation: 2024-2040

Termination: 2040-2042

Estimated total investment: 137 m€

- * Supported by 2 projects started in 2020
- H2020 Slices Design Study
- H2020 Slices Starting Community

SILECS – PIA-3/EQUIPEX+ Call (June 2020)

Core partners

- Inria
- CNRS
- IMT
- Université fédérale de Toulouse
- Université Strasbourg
- Université Grenoble Alpes
- Université de Lorraine
- Sorbonne Université
- Renater
- Eurecom
- ENS Lyon
- INSA de Lyon

Other participants

- Université de Lille
- Université de Rennes 1
- Université de Lyon
- Université de Nantes

Envisioned Architecture

JCAD - 2020, Dec 4

SILECS/GRID'5000

Testbed for research on distributed systems

- Born in 2003 from the observation that we need a better and larger testbed
- HPC, Grids, P2P, and now Cloud computing, and BigData systems
- A complete access to the nodes' hardware in an exclusive mode (from one node to the whole infrastructure)
- Dedicated network (RENATER)
- Reconfigurable: nodes with Kadeploy and network with KaVLAN

Current status

- 8 sites, 36 clusters, 838 nodes, 15116 cores
- Diverse technologies/resources
 (Intel, AMD, Myrinet, Infiniband, two GPU clusters, energy probes)

Some Experiments examples

- In Situ analytics
- Big Data Management
- HPC Programming approaches
- Network modeling and simulation
- Energy consumption evaluation
- Batch scheduler optimization
- Large virtual machines deployments

SILECS/FIT

Providing Internet players access to a variety of fixed and mobile technologies and services, thus accelerating the design of advanced technologies for the Future Internet

FIT-R2Lab: WiFi mesh testbed (DIANA)

FIT-CorteXlab: Cognitive Radio Testbed 40 Software Defined Radio Nodes (SOCRATE)

https://www.iot-lab.info/hardware/

- FIT-IoT-LAB
 - 2700 wireless sensor nodes spread across six different sites in France
 - Nodes are either fixed or mobile and can be allocated in various topologies throughout all sites

SILECS: Data Center Portfolio

Targets

 Performance, resilience, energy-efficiency, security in the context of data-center design, Big Data processing, Exascale computing, AI, etc.

Hardware

- Servers: x86, ARM64, POWER, accelerators (GPU, FPGA), ...
- Al dedicated servers
- Edge computing micro datacenters
- Networking: Ethernet (10G, 40G), HPC networks (InfiniBand, Omni-Path), ...
- Storage: HDD, SSD, NVMe, both in storage arrays and clusters of servers, ...

Experimental support

- Bare-metal reconfiguration
- Large clusters
- Integrated monitoring (performance, energy, temperature, network traffic)

SILECS: Wireless Portfolio

Targets

- Performance, security, safety and privacy-preservation in complex sensing environment,
- Performance understanding and enhancement in wireless networking,
- Target applications: smart cities/manufacturing, building automation, standard and interoperability, security, energy harvesting, health care

Hardware

- Software Defined Radio (SDR), NB-IoT, 5G, BLE, Thread
- Wireless Sensor Network (IEEE 802.15.4),
- LoRa/LoRaWAN, ...

Experimental support

- Bare-metal reconfiguration
- Large-scale deployment (both in terms of densities and network diameter)
- Different topologies with indoor/outdoor locations
- Mobility-enabled with customized trajectories
- Anechoic chamber
- Integrated monitoring (power consumption, radio signal, network traffic)

SILECS: Outdoor IOT testbed

- IoT is not limited to smart objects or indoor wireless sensors
 - smart building, industry 4.0,
- Smart cities need outdoor IoT solutions
 - Outdoor smart metering
 - Outdoor metering at the scale of a neighborhood (air, noise smart sensing,)
 - Citizens and local authorities are more and more interested by outdoor metering
- Controlled outdoor testbed
 - (Reproducible) polymorphic IoT: support of multiple IoT technologies (long, middle and short range IoT wireless solutions) at the same time on a large scale testbed
 - Agreement and support of local authorities
 - Deployment in Strasbourg city (500000 citizens, 384 km2)

An experiment outline

- Discovering resources from their description
- Reconfiguring the testbed to meet experimental needs
- Monitoring experiments, extracting and analyzing data
- Controlling experiments: API

Need to automatize/simplify the workflow and/or integrate it into higher level tool to enhance reproducibility

Plans for SILECS/SLICES: Testbed Services

• Provide a unified framework that (really) meets all needs

- Make it easier for experimenters to move for one testbed to another
- Make it easy to create simultaneous reservations on several testbeds
 - for cross-testbeds experiments
- Make it easy to extend SILECS/SLICES with additional kinds of resources

Factor testbed services

- Services that can exist at a higher level, e.g. open data service, for storage and preservation of experiments data
 - In collaboration with Open Data repositories such as OpenAIRE/Zenodo and EOSC
- Services that are required to operate such infrastructures
 - Users management, usage tracking, etc.

Services & Software Stack

Built from already functional solutions

Exchanges with the community

- JCAD 2018, 2019, and 2020
- TILECS Workshop
 - 2019, July 3-4, Grenoble, LIG/IMAG
 - 101 attendees (academics and some from the industry)
 - https://www.silecs.net/tilecs-2019/
- Silecs Request for input (closed)
 - 1/2 page(s) document describing which kind of experiment you would like to perform in the next 4 years and what will be you dream infrastructure (hardware/software/services)
 - Analysis to be provided soon
- Slices Request for input (open)
 - Online survey on Research Infrastructure Needs and Requirements (15 questions)
 - https://survey.iotlab.eu/index.php/326467?lang=en

JCAD - 2020, Dec 4

Conclusions

- SLICES: new infrastructure for experimental computer science and future services in Europe
- **SILECS**: new infrastructure in France based on two existing instruments (FIT and Grid'5000)
- Big challenges!
 - Design a software stack that will allow experiments mixing both kinds of resources while keeping reproducibility level high
 - Keep the existing infrastructures up while designing and deploying the new one
- Keep the aim of previous platforms (their core scientific issues addressed)
 - Scalability issues, energy management, ...
 - loT, wireless networks, future Internet
 - HPC, big data, clouds, virtualization, deep learning, ...

Address new challenges

- IoT and Clouds
- New generation Cloud platforms and software stacks (Edge, FOG)
- Data streaming applications
- Big data management and analysis from sensors to the (distributed) cloud
- Mobility
- Next generation wireless
- **–** ...

Next steps

Waiting for results for PIA-3EQUIPEX+ and ESFRI Slices (hearing in Spring 2021)

Thanks, any questions?

http://www.slices-ri.eu

https://www.silecs.net/

https://www.grid5000.fr/

https://fit-equipex.fr/

