Importing a new application into the Virtual Imaging Platform: a short demo

Sorina Pop, Axel Bonnet, Frederic Cervenansky
Demo Outline

- Short VIP overview
- Creating a docker image
- Boutiques application descriptor
- Importing the application into VIP
- Wrap-up
Medical Imaging Research Laboratory
www.creatis.insa-lyon.fr

Web portal
Application as a service
File transfer to/from grid

Infrastructure
Supported by EGI Infrastructure
Uses biomed VO (~65 sites in Europe and beyond)
VIP consumes ~23 CPU years every month

Scientific applications
Cancer therapy simulation
Prostate radiotherapy plan simulated with GATE (L. Grevillot and D. Samut)

Image simulation
Echocardiography simulated with FIELD-II (O. Bernard et al)

Neuro-image analysis
Brain tissue segmentation with Freesurfer

Modeling and optimization of distributed computing systems
Acceleration yielded by non-clairvoyant task replication (R. Ferreira da Silva et al)

Users
1220 registered users in November 2020
61 publications since 2011

DIRAC
France-Grilles

Containers

• A container = an entire runtime environment
 – An application + all its dependencies, libraries and other binaries, and configuration files needed to run it, bundled into one package
 – Differences in OS distributions and infrastructures are abstracted away

• Popular container technologies
 – Docker and Singularity

• Hands-on
 – Build and push a container to Docker-hub
Boutiques

- Describe, publish, integrate and execute applications across platforms
 - facilitate application porting
 - import and exchange of applications
 - Linux containers to facilitate application installation and sharing

- https://github.com/boutiques
- https://github.com/boutiques/boutiques/tree/master/schema

Findable
1. Globally persistent records
2. Described with rich metadata
3. Searchable

We leverage Zenodo [2] to create DOIs for Boutiques descriptors which can be accessed via the Zenodo API.

Interoperable
1. Formalized and shared metadata standard
2. Metadata standards adopted are FAIR
3. Linking between objects where appropriate

CARMIN [3] and Boutiques [4] standards are used to describe and launch tools, either locally or through a RESTful API.

Accessible
1. Easily retrievable
2. Universal access
3. Persistent metadata beyond data lifetime

The retrievable tool descriptions contain immutable human- and machine-readable instructions for testing and launching each tool.

Re-Usable
1. Multiple accurate and relevant attributes
2. Clearly licensed
3. Meets minimum domain standards

FAIR tools. Credits: Gregory Kiar and Tristan Glatard
What about more complex workflows?

- Describe individual applications with Boutiques
- Write the corresponding workflow
 - Gwendia language for the Moteur Workflow Engine
- Moteur Workflow Engine
 - Data oriented
 - Allows to easily express parallelization
 - Dot and cross product iteration strategies
 - https://hal.archives-ouvertes.fr/hal-00691832/document
Wrap-up

- VIP offers scientific applications as a service
 - No need for installation on the users’ side

- Integration of a new standalone application
 - Boutiques application descriptor
 - Build a container of your application

- Integrating a pipeline
 - Same as above +
 - Workflow to be written with help from VIP team
THANK YOU FOR YOUR ATTENTION!