

European Research Council Established by the European Commission

VITAE VIrTual brAin pErfusion

ERC Proof of Concept VITAE (GA 825829)

JCAD 2020 Alexandre Sauvé Institut de Mécanique des Fluides, Toulouse

Contributors: Jean-Daniel Julien, Maxime Berg, Myriam Peyrounette, Pierre Elyakime, Yohan Davit, Maxime Pigou , Sylvie Lorthois

Outline

Context Software **Benchmarks & results Return on experience** Perspectives

Context

Problem

Blood flow is vital for feeding and cleansing neurons

Recent discovery

Blood flow decrease before measurable cognitive decline in Alzheimer's Disease (2016)

Novel therapeutic strategy

development of drugs targeting the vascular system

Idea

Use HPC simulation of cerebral blood flow to accelerate vascular targeted drug development

Blood flow study

- Vascular networks have a complex topology
- Blood itself is a complex fluid

Context | Software | Result | Experience | Perspectives Blood flow simulations

Previous Simulations (using V1.0) 14k vessels

Issue

Does not scale up for large vascular networks

PhD IMFT Maxime Berg, Berg et al. 2020

1 mm³ mouse brain

Whole mouse brain imaging

International effort to acquire whole mouse brain vascular networks

2020: publication of a pipeline reconstructing the full vascular network of a mouse brain at *Institut du Cerveau et de la Moelle épinière (ICM)*

Kirst et al. 2020

Whole mouse brain imaging

Example: Lightsheet microscopy

Kirst et al. 2020

Kirst et al, 2020

Whole mouse brain imaging

Simulation goals :

- 5M to 10M vessels
- Pressure and blood flow
- Distribution of red blood cells
- Nutrient and drug delivery

Kirst et al. 2020

Electrical analogy

- $-\Delta U = RI$
- $-\Delta P = RQ$

Matrix formulation for full brain

- Inversion of a ~5Mx5M sparse square matrix M
- Requires gradient descent like algorithm
- Requires parallel calculation

$$Mp = y$$

- 2014: V1 start
 - Research code in C++
 - Not scalable
 - Completely written on top of *PETSc*
- 2018: ERC POC grant
 - Scaling for full brain
 - Code industrialization
- 2019: V2 start
 - Hiring dedicated software engineer
 - Codebase mostly rewritten
- 2020: first tests on full brain data (Kirst et al.)

Context | Software | Result | Experience | Perspectives The VITAE Software Software

Design goals

- Fully parallel processing
- CPU efficient
- Modern C++
- Modular API
- User friendly
- Fully documented

Dependencies

- std=c++14 (gcc9, ICC 18 & 19)
- Compilation (cmake-3.10)
- MPI (OpenMPI-2.1.1, <u>MPICH</u>-3.3.2)
- Parallel IO (HDF5-1.10.5)
- Linear algebra (PETSc-3.7.7)
- Graph partitioning (Parmetis-4.0.3)
- JSON Config (nlohman-json-3.7)
- JSON Schema #7 (pboettch-2.0)
- Unit tests (cxxtest-4.4)

Data model

Vascular networks have a graph structure

Peyrounettte et al. 2018

Three major categories

- vertex for bifurcations
- edge for vessels
- point for vessels path (grouped by edge)

Network	Size [vertex]	Memory footprint estimation
[V1] Kleinfeld (mouse)	10 k	11.7 MiB
[V2] Average mouse brain	5 M	6.1 GiB
Average Human brain	>1G	> 1.2 TiB

Context | Software | Result | Experience | Perspectives Graph Partitioning

Benchmarks

Efficiency of graph partitionning

Lower is better

Benchmarks

Lower is better

Benchmarks

MPI peak memory scaling for 1 process

Profiling tool: valgrind --tool=massif

.693^

Results

Full brain pressure and flow rate calculation

- Half mouse brain
- Data source:
 - ICM (Kirst et al. 2020 CU)
 - HDF5 File size: 507MB
 - Nb vertices: 3.4M
 - Nb edges: 4.7M
- Calculation
 - Olympe@CALMIP
 - ~10 minutes
 - one process
- Visualization
 - Avizo

PhD Marion Giraud IMFT

Issues

Technical

- PETSC installation & config
- Direct use of HDF5 instead of PETSc wrapping
- MPI is not very well suited for graph manipulation
 - Graph structure requires to call various mixtures of Mpi Alltoall() and Mpi_Alltoallv()
 - Average nb of connected domains is 13 which may require specific optimizations
- Intel ICC18 compiler (std::shared_ptr<std::array>, etc.), ICC19 easier
- CMake steep learning curve, one has to use modern version
- C++ version of dependencies often not available or incomplete Example: HDF5, PETSc, MPI, etc.

Other

- Semantic
 - Example: disambiguate UIDs versus global offset and local offset

Solver teamwork

Solver specifications

1) Scientific goal Mesh definition

Numerical scheme 2) Algorithm

3) Code Specifications Data, Object Model

Software quality

GitLab

Continuous integration

- Git versionning
- Wiki
- Runners
- unit tests

Naming convention document

Schema validation

Documentation

- Latex manual
- Rich doxygen code snipets —

Test	Utilities
🕑 test-api-gnu 🏾 🕄	🕑 utilities-mkp 🕻
🕑 test-api-gnu 🕄	
🕑 test-api-intel 🖸	
🕑 test-legacy-gnu 🕄	
🕑 test-legacy-g 🕄	
🚺 test-legacy-i 🕽	
🕑 test-legacy-i 🕄	

- Solver: BrainPulse
 - Solver for blood pulsatility
 - Project lead: Alexandra VALLET (univ. oslo)
- Solver: BioGrow
 - Simulation of bacterial growth
 - Project lead: Jean-Daniel Julien
- Solver: PhaseSeparation
 - Calculation of blood cells concentration in plasma
 - Initial author: Maxime Berg
 - Porting to VITAE API V2: Maxime Pigou
- Solver: MassTransport
 - Simulation of solute transport into blood
 - Initial author: Maxime Berg
 - Porting to VITAE API V2: Alexandre Sauvé

iterative solvers

Technical

- Improve flow solver convergency time (*PETSc* KSP methods)
- Improve partitioning scaling (Example: test *PT-SCOTCH*)

Data exploitation

- New vascular networks from various collaborations
- Reduction of full brain results

